Test of the universality of free fall with atoms in different spin Orientations

Xiao-Bing Deng¹, Xiao-Chun Duan¹, Min-Kang Zhou¹, Hui-Bin Yao¹, Cheng-Gang Shao¹, and Zhong-Kun Hu¹

¹MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of physics, Huazhong university of Science and technology, Wuhan 430074, China

Presenting Author: xiaobingdeng@hust.edu.cn

We present our recent work on test of the universality of free fall (UFF) with atoms in different spin orientations (Figure 1), namely, the ⁸⁷Rb atoms in $m_F = +1$ and $m_F = -1$. A Mach-Zehnder-type atom interferometer is exploited to sequentially measure the free fall accelerations of the atoms in the two sublevels. The spin-orientation related Eötvös parameter η_s is obtained by comparing the measured gravity accelerations, correspondingly, and the preliminary result is $\eta_s = (-0.2 \pm 1.5) \times 10^{-5}$. Since the atoms in $m_F = +1$ and $m_F = -1$ are highly sensitive to magnetic field inhomogeneity, which mainly limits the precision of our UFF test, three steps are taken to alleviate the influence of the magnetic field inhomogeneity. Firstly, a relative homogeneous magnetic field space is selected for the interfering to take place, and an anti-Helmholtz coil is added to compensate the magnetic field gradient in vertical direction, ulteriorly. Secondly, the direction of the effective Raman laser wave number \mathbf{k}_{eff} is reversed to make a differential measurement for each m_F . The influence which is independent of \mathbf{k}_{eff} can be canceled. However, with the Raman lasers configured in $+k_{\text{eff}}$ versus $-k_{\text{eff}}$, the directions of the recoil velocities are opposite. This induces a tiny difference between the atoms' trajectories, and consequently causes a residual influence in the differential measurement result. The third step is to correct this residuum using the common mode result for the two interfering configurations of \mathbf{k}_{eff} .

Figure 1: Schematic of the spin orientations for ${}^{87}Rb$ atoms in $m_F = +1$ and $m_F = -1$.

References

[1] Xiao-Chun Duan, Min-Kang Zhou, Xiao-Bing Deng, Hui-Bin Yao, Cheng-Gang Shao, Jun Luo, and Zhong-Kun Hu, arXiv: 1503.00433v1.